

Daily Tutorial Sheet-10 Level - 2

- **116.(B)** E.G.E of Cl is higher & also, EGE of C > N because N is half filled (Stable configuration) so will not accept e^- easily.
- **117.(B)** I.E. of N > O because of it having half filled configuration
- **118.(B)** In the isoelectronic species, all isoelectronic anions belong to the same period and cations to the next period.

119.(ABCD)

Due to inert pair effect, +2 oxidation state is more stable down the group.

So,
$$Ge^{4+} > Sn^{4+} > Pb^{4+}$$
 but $Ge^{2+} > Sn^{2+} < Pb^{2+}$

Also, Sn^{4+} is more stable than Sn^{2+}

But Pb²⁺ is more stable than Pb⁴⁺

120.(ABC)

- (A) Any orbital can accommodate maximum 2 electrons
- **(B)** For same Z, successive I.E. increases due to increase $in\left(\frac{z}{e}\right)$
- (C) $Co(27): [Ar]3d^74s^2$ $Co^{2+}: [Ar]3d^74s^0$ unpaired $e^- = 3$
 - $Co^{3+} : [Ar]3d^6 4s^0$, unpaired $e^- = 4$
- **(D)** I.E. of Pt (6 period) > I.E. of Pd (5 period) due to poor shielding effect of 4f subshell in 6th period.
- **121.(C)** More difference in E.N, more polar bond.
- **122.(A)** The electronegativity difference between M_1 and O is 0.1, which indicates M_1 O bond will be covalent, since O-H bond having more ionic character thus bond will break and H^+ ions will release and acidic solution is formed. Whereas difference between electronegativity of M_2 O bond is 2.3, thus, M_2 OH bond will break. Hence solution will be basic in nature.

123.(ABD)

- **(A)** $M(g) \to M^+ IE_1 = 100eV$
- (B) $M \to M^+ = 100 \,\text{eV} \\ M \to M^{2+} = 250 \,\text{eV} \\ M^+ \to M^{2+} = 150 \,\text{eV}$
- (C) Incorrect \rightarrow IE₂ \rightarrow M(g) = 150 eV not 250 eV
- **(D)** Incorrect \rightarrow Valid in case of M^+
- **124.(C)** E.N. is the tendency to attract shared pair of e^- while EGE is the tendency of an isolated atom to attract one e^- .
- **125.(B)** (a) Correct order \rightarrow Ca²⁺ > K⁺ > Cl⁻ > S²⁻ (Ionization energy) For isoelectronic species (I.E. \propto Z_{eff.})
 - (b) Correct order \rightarrow C < N < F < O (2nd I.E.) Second electron removal from O requires more energy as it acquires stable $2\,s^2\,2p^3$ configuration after removal of one electron.

Solution | Chemistry 140 Periodic Properties

- (c) Correct order \rightarrow B > Tl > In > Ga > Al (Electronegativity) In general EN increases in boron family from top to bottom due to increase in Z_{eff} on valence shell while boron has highest E.N. due to its very small size.
- (d) Correct order \rightarrow Na⁺ > Li⁺ > Mg²⁺ > Al³⁺ > Be²⁺ (Ionic radius) Ionic radius depends on Z_{eff} and number of shells.

Solution | Chemistry 141 Periodic Properties